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LINEAR ELLIPTIC DIFFERENCE INEQUALITIES 
WITH RANDOM COEFFICIENTS 

HUNG-JU KUO AND NEIL S. TRUDINGER 

ABSTRACT. We prove various pointwise estimates for solutions of linear ellip- 
tic difference inequalities with random coefficients. These estimates include 
discrete versions of the maximum principle of Aleksandrov and Harnack in- 
equalities and Holder estimates of Krylov and Safonov for elliptic differential 
operators with bounded coefficients. 

1. INTRODUCTION 

The purpose of this work is to establish analogues for difference opera- 
tors of certain pointwise estimates for linear elliptic differential operators with 
bounded, measurable coefficients. In particular we derive discrete versions of 
the Aleksandrov and Bakel'man maximum principle [1, 2], the Holder esti- 
mates and Harnack inequality of Krylov and Safonov [8], and the local maxi- 
mum principle and weak Harnack inequalities in Trudinger [14]. Our estimates 
shall be formulated in such a way that their continuous versions follow via 
Taylor's formula. In a subsequent paper [9] we apply the Holder estimate to 
deduce the convergence of discrete numerical schemes for fully nonlinear ellip- 
tic differential equations under very general structure conditions [15]. In fact, 
the approximation of viscosity solutions of nonlinear elliptic equations provided 
the motivation for the present study. 

The difference operators encompassed are of positive type. To describe them, 
we let h be a (small) positive parameter and let 

zh I X=(l mn)h |mi E , i = 1, . .., n} 

denote the orthogonal lattice or mesh, with mesh length h, in Euclidean n- 
space IRn . A real-valued function u on Zn is called a mesh function, and for 
fixed y (=$ 0) E Zn we define the following difference operators, acting on the 
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linear space of mesh functions X: 

<+u(x)= {u(x+y)-u(x)}, 
1 

by u(x) = {u(x) - u(x - y)} 

(1.1) 1 _ 1 
5yu(X) = 2(5y + b5y)U(X) = 2 U(X + y) - u(x - y), 

6u(x) = y;U((x) = 2{u(x + y) - 2u(x) + u(x - y)}. 

We consider second-order difference operators of the form 

(1.2) Lhu(x) = Za(x, y>5,u(x) + A b(x, y)6yu(x) + c(x)u(x), 
y y 

with real coefficients a, b, c satisfying (at least) 

(1.3) a(x, y) - 'Iyl lb(x, y)l > 0, c(x) < 0 

for all x, y E 7Zn. Such operators are of positive type, as defined by Motzkin 
and Wasow [11], and satisfy a maximum principle [11, Theorem 3, 4]. More- 
over, for any linear, uniformly elliptic, second-order differential operators 

(1.4) Lu =a D.Ju + b'D.u + cu 

with bounded coefficients ai, bi, c, satisfying 

(1.5) a iXiX; > 11, C < O 

for all 4 E IR n and some positive constant A, there exist difference operators 
Lh satisfying (1.3), which are consistent with L [11, Theorem 2]. We shall 
supply a proof of this assertion in ?6. The coefficients a(x, y) will also have 
compact support in y but the reader may even assume for technical simplicity, 
without losing any basic ideas, that a(x, y) vanishes except when y = he,, 
i = 1, ... , n, where el, ... , en are the coordinate vectors. This situation 

corresponds to a diagonal coefficient matrix [a'J]. 
We conclude this introduction with some brief historical remarks. In the 

special case of two dimensions, a local Holder (in fact Lipschitz) estimate for 
solutions of general elliptic difference equations with random coefficients was 
obtained by Brandt [5]. Elliptic difference operators on graphs, corresponding 
to divergence form differential operators, 

(1.6) Lu = Di(ai u) 

were considered by Merkov [10], who derived Holder and Harnack inequalities 
analogous to those of De Giorgi and Moser; see [7, Chapter 8]. The methods in 
[5, 10] are necessarily totally different from ours. Earlier work in the 1960's dealt 

2 with extensions of L and Schauder estimates to elliptic difference equations; 
see for example [3, 4, 13], also [6] for a more modern treatment. Unlike the 



LINEAR ELLIPTIC DIFFERENCE INEQUALITIES 39 

hypotheses of the latter theories, our coefficients are random in the sense that 
their values at neighboring mesh points are independent of the mesh length. 

2. THE DISCRETE MAXIMUM PRINCIPLE 

In this section, we prove discrete versions of the maximum principles of Alek- 
sandrov [1] and Bakel'man [2]. Our technique adapts the geometric argument 
of Aleksandrov, as presented for example in [7], to the discrete case. To formu- 
late our result, we let Q denote a bounded domain in Euclidean n-space n 

and let Qh = Q n Z nbe the set of mesh points lying in Q. We shall consider 
operators of the form (1.2) defined for points x E Qh and satisfying, together 
with (1.3), a nondegeneracy condition, namely for each point x E Qh , there 
exists an orthogonal set of vectors y1, ...n, yC E n such that 

(2.1) a(x, y' -l2y'l lb(x, y')l > is(x) > O. 
Furthermore, we assume the coefficients a(x, y) vanish whenever yl =IYI2 > 
ANh for some N E Z and write 

n 

9 (X) A |2(X), _(* =~ ll/n 
(2.2) i=1 

b(x) = lb(x, y)j, 6 = diamQ?+ Nh. 
y 

Our maximum principles provide bounds for solutions in terms of integral 
norms over certain subsets. If u is a mesh function on a set S c Z, we 
define the upper contact set of u in S, F+ = IF+, to be the subset of S where 
u is concave, that is F+ consists of those points x for which there exists a 
hyperplane P = P(x) in IRn+l passing through x and lying above the graph of 
u in S. Denoting Lp norms of mesh functions u over sets S by 

/ ~ ~~~~~~ \ /p 

(2.3) H1UH1P;S = (hnlu(x)P) 1p 

XES 

we then have the following discrete analogue of [7, Theorem 9.1]. 

Theorem 2.1. Let u be a mesh function satisfying the difference inequality 

(2.4) Lhu > f 
in Qh Then, 

(2.5) max u < max u' + C5NHf/?2f *nvr+ 

where C depends on n and Njjb/2*11nr+, u+ = max{u, 0}, and F+ is the 
upper contact set of u in Qh. 

The proof of Theorem 2.1 is based upon the notion of normal (or supergra- 
dient) mapping, the normal mapping of a mesh function u on a set S, at a 
point x E S, being defined by 

(2.6) X(X) = XU(X) = {p E IRniu(z) < U(X) +P. (z - X) for all z E S}. 
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The upper contact set F+ of u on S is thus the subset of S where X is 
nonempty. If S' is any subset of S, we further define 

%(S)= U x(x). 
xES' 

Defining the boundary AS of a subset S ch to be the set of points in S 
0 

which have a neighbor outside S and the interior S = S - AS, we then have 
as a preliminary estimate: 

Lemma 2.2. Let u be a mesh function on S C Zn satisfying u = 0 on AS, 
maxs u > 0. Then, 

0 

(2.7) BR = {P E Rii I,7I < R} c xU(S) 
for R = maxS u/diam S.- 
Proof. The proof of (2.7) corresponds to that in the nondiscrete case as given, 
for example, in [7, p. 222]. Suppose that u takes a positive maximum at a 

0 

point y E S, and let uy be the mesh function on AS U {y} given by 

[\u(y) if x=y, 
uykx)-1 = 0 if x E AS. 

0 

Then xu (y) c xy(S), since for each hyperplane passing through (y, u(y)) and 
lying above AS x {0}, there will exist a parallel hyperplane passing through 

0 

some point in the graph of u on S and lying above u on S. Letting k be 
the function on iRn whose graph is the cone K with vertex (y, u(y)) and base 
Bd (y), where d = diam Q, we then have (as in [7, p. 222]) 

0 

BR = xk(y) c x% (y) c xu(S). o 

Proof of Theorem 2.1. We first treat the case b 0 O. Setting 

S = {x +yjx e Qh , jyj < Nh}, 

we can assume, by replacing u with u - maxs u+, that u < 0 on OS 

and max u > 0 (otherwise (2.5) is trivial). Writing v = u+, we then have 
r+ c Qh n F+ , with u = v on F+ . Consequently, for x E F+ and jyI < Nh, 
we have 

u(x +y) < u(x) +p *y 

for some p E Rn, whence by addition 

(2.8) 62u(x) < O. 

Hence, for (2.4) and (1.3), 
0 < a(x, y)[2v(x) - v(x + y) - v(x - y)] 

(2.9) 
< a(x, y)[2u(x) - u(x + y) - u(x - y)] 

(2.9) < Y2 '2 2 fX l12, Ya(x, y')y,U(X) < IYI (CU(X) - f(X)I 
y 
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In particular, for y =y we have 

(2. 10 ) [V (X) - v(x _ yi] _ [V (X + yi) _ V (X)] < Lyi 12 If (X) I , 

so that, if p E 
Xv(x), 

then pyi = p y'/ly'Il lies between the numbers v+iv(x) 
and 8v+iV(x) + yj I If(x)I/) I. Accordingly, the n-dimensional Lebesgue measure 
of Xv (x) is estimated by 

(2.11) Ixv(x)I < [l(Y ly 1 n < (Nh I f(x) ) 

Thus, by Lemma 2.2, with to denoting the volume of the unit ball in R'1, 

Ctn ( sa) < lXv(nh)l < -12r(x) 

whence we obtain the special case of (2.5), 

(2.12) maxu < max u + f (5N f nr 

To treat the general case, we introduce the function 

(2.13) g(p)= (,pnl/(n-1) +# n/(n-1)) 1-n 

for p E In and some ,u > 0 to be fixed later. By Lemma 2.2, we have for 
R = I maxS v the estimate 

(2.14) jg < j g ? Z {maxg} IX,(x)I < E g(p)lXv (x)I, 
BR v (Qh) XEF+ xv (x) xEr+ 

where p = p(x) E Xv(x) is chosen so that g(p) = max (x) g, which is possible 

since xv(x) is a closed set. Now, since p, = p Y/lyI lies between 6+ u(x) and 

5y u(x), there exists a number r = rp E [O, 1] such that 

lpy=(- r)J' u(x) + rJy u(x). 

Consequently, using the differential inequality (2.4), we have (for x E F+) 

- S a(x, y)dr U(X) < 5 b(x, y)Jyu(x) + c(x)u(x) - f(x) 
Y Y 

<15 b(x, y)(<yu(x) + 5y7u(x)) - f (x) 
y 

= 5 b(x, y2){py + (r - 2Uyk5. u(x)} - f(x). 
y 

Hence, defining new coefficients 

a(x, y) = a(x, y) - 2jyj Ib(x, y)I, 
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we therefore obtain in place of (2.9), 

a(x, y)[2v(x) - v(x + y) - v(x - y)] 

(2.15) < y I2I (b(x)Ipl + If(x)I) < ? 2 (lbvIn + ,,-nIfin) /n 

by Holder's inequality. We thus obtain, in place of (2.1 1), the estimate 

(2.16) IX (x)l < (Nh)n(lbIn +,-n if In) 

Thus, by (2.14), 

f g ? E g(p)Ixv(x)I < (Nh)n Z (IbI + 
(2.17) BR xEr+ xEr+ 

< {Nllb/_ lln r+l}n + 1 b, 

with the choice ,u = Nllf/* IIn,r+ for f $ 0. 
Using the proof of [6, Theorem 9.1], we then obtain the estimate 

(2.18) max v < { (2e 21) - 1} (5NIIf/<*IIn,r 

and the proof of Theorem 2.1 is thus complete. a 

Remarks. (i) We need only assume the vectors yI, ..., yn are linearly inde- 
pendent in condition (2.1), in which case we replace 2 in (2.2) by 

(2.19) =(ii= x) Idet[y/Iy'I]II 

(ii) The constants in estimates (2.12) and (2.18) may be improved. In par- 
ticular, using in place of (2.10) the sum 

n 

(2.20) ZX1{y-,v(x) -tgv(x)} < NhIf(x)I, 
i=1 

we obtain, instead of (2.1 1), 

(2.21) 1 1<(Nh I (x) I)n 

so that 2* can be replaced by n2T* in (2.12) and (2.18). 

3. THE DISCRETE LOCAL MAXIMUM PRINCIPLE 

In this section, we prove a discrete version of the local maximum principle 
(or mean value inequality) in [ 14, Theorem 1 ]. Although our method is inspired 
by that in [14], the manipulation of the cutoff functions in the discrete case is 
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far more intricate. We shall maintain the same operator hypotheses as in the 
preceding section but now write, instead of (2.2), 

A(x) = infAi{(x), a(x) = I a(x, y), 
(3.1) y 

aO = supa/l{, bo = supb/l{, co = sup cI/R 

Theorem 3.1. Let u be a mesh function satisfying the difference inequality (2.4) 
in Qh. Then for any ball B = BR(XO) C Q with center XO f Qh' Nh < R, 
concentric subball Ba = BUR(xo), 0 < ci < 1, and exponent p > 0, we have the 
estimate 

(3.2) maxu < C El[R (u+) ] + R| l , 

where Bh = B n Qh Bg = B Bh, and the constant C depends on n, N, c, 
p, ao, and boR. 
Proof. Without loss of generality, we can assume xo = 0 . Similarly to [14], we 
shall consider a function of the form 

(3.3) v = qV, 

where i is an appropriate cutoff function for the ball B with i > 0 in B and 
q = 0 otherwise. First, we observe that if x is a point in the upper contact set 
of v in Bh, then there exists a vector p c 4V(x) such that 

(3.4) lpl < v(x)/(R - lxjK0). 

Furthermore, for any y e - {0} (with a(x, y) $& 0), we can write 

(3.5) py= ply =ry5y'v(x) + (1 - r1)y v(x) 

for some ry =ry(x) e [O, 1]. By rewriting 

py= -r ((5. -<y )v + A y v = (1 - r)(y - <y )v + A yv, 
we then obtain 

{ryq(x + y) + (1- r )q(x - y)}(5, - +)v(x) 

= [i(x + y) - i(x - y)]pY + i(x - y)6y v(x) - i(x + y)5y v(x) 

(3.6) = -2jyj5Y(x)pY + i(x)u(x)[i(x + y) + i(x - y)] 
- (x + y)q(x - y)[u(x + y) + u(x - y)] 

= -2jyj5JY(x)pY - i(x + y)i(x - y)[u(x + y) + u(x - y) - 2u(x)] 

+ u(x){i(x)[i(x + y) + i(x - y)] - 2q(x + y)i(x - y)}. 
Consequently, we have the formula 

- {rvq(x + y) + (1 - rv)q(x - y)h5'v(x) 

(3.7) = 2p 6 i(x) - i(x + y)i(x - y)> u(x) 

+ [2<i+q(x)(5 i(x) - q(X)i52i(x)]u(x). 
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By a similar argument, we also have 

- IY{rIi(x + Y) - (1 - rY)q(x - Y)}(5yv(x) 
(3.8) = [q(x + y-) + q(x - y)]py + 2q(x + y)i(x - y)6yu(x) 

+ 2q(x)u(x)5Yq(x). 

To proceed further, we assume ii(x + y)q(x - y) > 0, so that, combining (3.7 
and (3.8) with (2.4) and writing, as before, 

a(x, y) = a(x, y) - I jyI lb(x, y)j, 

we obtain the following difference inequality for v: 

E ( 'Y{ +y) ir(x -y) } 
v (x) 

< ax 2py Y (x) + [ 2< > (x)5 1 (x) - 1 (x) 5y> q (x) ] u (x) 1 
(3.9) ? a(x, {y p5)x + i( +y)i( y 

){[N(X+Y)+11(I y] 2Y (() )U(X) y5 q(X)} b(x, y) ~ ~ ~ 2+ i(+)ixy 

-f (x). 

We now fix q by setting 

(3.10) P(x)=(l- R)2 xEB, 

for some ,B > 2 to be chosen later. Then, provided 

(3.11) R2 _ IX12 > 4RNh, 

we have the inequalities 

2-f < i(x+Y) <2 
- (x)- 

? fl2f 1-1/fl? 51 iq< 2 q (x) 

2<(,8 - i)2f l -2/,f 
I(5'qj < iq (x), 

so that, using these inequalities together with (3.4) in (3.9), we obtain 

-Lv(x) -Z,(x y)fr5v(x) 

(3.12) ( 1-2/fl 1-1/fl 

< C ja(x) R2 u(x) + b(x) R u(x) + If(x)Ij 
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where C depends only on ,B and N. If the restriction (3.11) on the point 
x is not satisfied, we first observe that, by replacing u by u+ , we can assume 
u > 0, whence 

2 2 ( (x) u(x) 32N 
2 

1-2/f 
V(X < 

<- u(x)i (x), 
-( () h2 R2 

using 12/fl < (4Nh/R)2, so that (3.12) continues to hold. The remainder of 
the proof now follows along the lines of [14]. Applying the discrete maximum 
principle, Theorem 2.1, to the function v, we obtain 

(3.13) maxv < C {a R 1 URn-2/fl j; + R f 
B h R ~' UIIBh ?R An;h 

where C depends on n, N, and ,B; with the choice ,B = 2n/p (assuming 
p < n ) we finally arrive at the estimate (3.2). o 

Remarks. (i) There is no need to require c < 0 in (1.3); the constant C in 
(3.2) then depends also on coR2. 

(ii) When f _ 0, p = 1, and u > 0 in (3.2), we obtain the mean value 
inequality 

(3. 14) u(xo) < C 
E: U( ) 

where C depends on n, N, ao, and boR, and [Bh] denotes the number 
of mesh points in Bh. The estimate (3.14) is well known in the special case 
y' =hei, a(x, y') = 1, a(x, y) = 0 for y y', i = 1, ...,n, b(x, y) = O, 
c = O,when Lh is the discrete Laplacian. 

4. HARNACK AND HOLDER ESTIMATES 

In this section, we proceed from the local maximum principle, Theorem 3.1, 
to derive interior Harnack and Holder estimates for solutions of elliptic dif- 
ference equations. Our approach is modelled on that suggested in [7, Problem 
9.1 1], with a discrete version of the fundamental Krylov-Safonov covering ar- 
gument playing a key role. First we require some lower estimates for positive 
supersolutions, and for these we continue the same hypotheses and notation as 
in the preceding section. 

Lemma 4.1. Let u be a mesh function satisfying the difference inequality 

(4.1) Lhu < f 

in Qh' with u > 0 on Bh, where B = BR(XO) C Q, XO E h . Then, for any 
concentric subballs Ba = BR (xo), BT = BZR(XO), < < T < 1, and sufficiently 
small h, we have the estimate 

(4.2) minu>yrminu-CR f (4.2) 
~ ~ ~~ IT BK n; Bh 
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where y and C are positive constants depending on n, a, T, N, ao, boR, and 
c0R2 . 2~~~~~~~~~~~~~~~~~~~ 

Proof. Again, we may assume xo = 0. Setting i1(x) = (R 2- Ixl2)' for jxl < R, 
/3 > 2, and q = O for IxI > R, we have by differentiation, 

D= -2/3x(R - 
2 

IX2)#-I 

Dij (x) = -2fN5 j(R2 - IxI2)I + 4fi(fl - 1)xix(R2 _ IX2)f-2 

for Ixl<R,sothat 

L~x) {a(x, y) ~yyD1i+b(x, y)LYD 1}c L(.(3) { Y4 E(YiYjDi + 2yiDi + c- 

(4*3) > f4f(,- l)-IAXI2 - 2fl(a + blxl)(R2 _ Ix12) + cR2(R2 _ Ix12)} 

* (R2 _ -XI2)#-2 

> 0 

for aR < ixi < R and ,B > (ao + boR + coR 2)/ (2 flo). Now, writing 
m = minBG u and 

(4.4) w = mR 2fl - u, 

we have w(x) < 0 for Ixl < oR, lxl > R, and 

(4.5) Lhw > mR -2(Lh - Lq) - f 
in Bh - B7. Consequently, by the maximum principle, Theorem 2.1, we obtain 

(4.6) _ ~~~mh f 
(46) w < CO C + R C(R+Nh)N| - 

where CO is a constant depending only on n, ,B, ao, bOR, and N, and C 
depends on n and boR. Hence it follows that in BhT 

(4.7) u > [(1 - T 2) m - C(R+Nh)N f 

which implies (4.2) for 

(4.8) Coh < ( 1 T2). El 

Using Theorem 3.1, we now improve Lemma 4.1. For convenience we shall 
take c = 0, but the general case may be recovered in the final Holder estimates 
by replacing f by f - cu. 

Lemma 4.2. Under the hypotheses of Lemma 4.1, there exists a constant 5 < 1, 
depending on n, N, aO, and b R, such that, if F c Bh satisfies 

(4.9) [1] > [B7], 



LINEAR ELLIPTIC DIFFERENCE INEQUALITIES 47 

then 

(4.10) minu>yminu-CR f 
n ~~~~~~n; Bh 

where y, h, and C are controlled by the same quantities as in (4.2). 
Proof. Setting m = minr u, we apply Theorem 3.1 to the function v = m - u 
in the balls B712, Ba to obtain 

maxv < C 1 [ 1R 
B a/2 ~ [By] B_ n;Bh 

<C {(1 - a) maxv + R f 

where C depends on n, N, ao, boR. Consequently, 

m-min u < C { ( 1-) (m-inu )+R n;fBh 

so that for 

(4.11) a= 1 - 1/2C, 

we have 

(4.12) minu>- 2CR 
h nBh 

whence (4.10) follows from Lemma 4.1. o 

We can now proceed to the derivation of a weak Harnack inequality for non- 
negative supersolutions, which constitutes yet a further improvement of Lemma 
4.1. In order to remove the restriction (4.8) on the mesh length h in Lemmas 
4.1 and 4.2, we need to assume that mesh points are effectively related by the 
operator Lh, and this is readily accomplished by requiring, as we do hence- 

forth, that the vectors y in condition (2.1) be given by y' = hei, where ei, 
i = 1, ..., n, are the coordinate vectors. 

Theorem 4.3. Let u be a mesh function satisfying the difference inequality (4. 1) 
in Qh' with u > 0 in Bh, where B = BR(XO) C Q, XO E h . Then there 
exists a constant p > 0, depending on n, N, ao, boR, such that, for any T < 1, 
Nh <(1 -T)R, we have 

(4.13) {(i-) up} < C {minu+R { }, 

where C depends on n, N, ao, bOR, T. 

Proof. Let us first observe that the restriction (4.8) can be replaced by the condi- 
tion Nh < (1- T)R. To see this, we fix any point z in BT , so that u(x) > 0 for 
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Ix - z I < Nh, whence by virtue of the difference inequality (4. 1) and condition 
(2.1) with y' = hei , 

(4.14) 2a(z)u(z) > Aiu(z ? hei) - h2f(X), i = 1, . . ., n. 

Consequently, if R < Coh/y, the result of Lemma 4.1 follows by a finite itera- 
tion (depending only on n, CO, T ). 

To complete the proof of Theorem 4.3, we follow an argument analogous to 
the original measure-theoretic argument of Krylov and Safonov [8]. We shall 
denote the cube of side length 2R and center x E Rn, parallel to the coordinate 
axes, by QR(XO)' that is 

QR(XO) = {x z 
n 

| |X-Xol_ < R}. 

Let us now fix a cube Q = Q2kh (XO) satisfying 

J0 x-h12, h/2, *,h/2) Ez zh k Ez N, 

Nh < 2kh < dist(xo, OQ)/3#fni. 

Defining Ft = {x E QhIU(X) > t} for t > 0, we then obtain from Lemma 
4.2, with judicious choice of o, T, that for any parallel subcube Q' = Qr(z), 
z Z n/i' satisfying 

h/2 

(4.15) [F1 n Q'] > [Q4], 

we have 

(4.16) u(x) > y t-CR 
f 

n; Bh 

in QhnQ3r(Z), where y and C are positive constants depending on n, N, aO, 

boR. We next invoke the following discrete covering lemma, whose proof is a 
replica of the continuous case [14, Lemma 3]. Note that our choice of xo is 
significant here. 

Lemma 4.4. For F C Qh and 0 < a < 1, set 

(4.17) F= U{Q3r(Z) noQhI[Fn Q'] > ?[Q4} , 
Qw 

where Q= Qr(Z)I Z E 'zh1/2 Then either F. = Qh or [F] ? J-'[F]. 

From Lemma 4.4, it follows by induction that, if [F,] ? aS[Qh], SE N, then 

u(x) > yst-CR 
f 

n;Bh 

for all x E Qh Choosing s so that Js < [FI]/[Qh] , that is 

sz t)l[Qhl < 
s 

([F1] lologo J [Qh] - 
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we then have 

Tjr logY/ log 6 

(4.18) inf u > Yt tQ] 
Qh K[Qh]) 

For fixed p < log 5/ log y, we thus obtain 

(4.19) {u[ 
p ?C Cminu ?R{ } 

(4.19) t ~[Qh] Qh Q {h lln; Bh} 

where C depends on n, N, ao, and b0R. The weak Harnack inequality, 
(4.13), now follows directly from (4.19), provided T is sufficiently small. But 
then the general case may be deduced by a standard chaining argument. E 

By combining Theorems 3.1 and 4.3 we obtain the Harnack inequality for 

nonnegative solutions. 

Corollary 4.5. Let u be a mesh function satisfying the difference equation 

(4.20) Lhu = f 

in OhI with u > 0 in Bh, where B = BR(XO) C Q. Then for any T < 1, 
Nh < (1 -T)R, we have 

(4.21) maxu <C c(minuR {f 
h, h~B n; BhJ 

where C is a positive constant depending on n, N, T, ao, and b0R. 

Remark. The proof of Theorem 4.3, Corollary 4.5 can be extended to permit 
2 

c $ 0, in which case the constants C also depend on coR 
Finally, we arrive, at an interior Holder estimate for solutions, which can be 

deduced from Theorem 4.3 or Corollary 4.5, as in the continuous case [7]. 

Corollary 4.6. Let u be a mesh function satisfying (4.20) in Qh .Then for any 
ball B = BR(xo) c Q2 and 0 < T < 1, we have 

(4.22) OSC U < CT { (1 +CoR 2)maxlul? +RIIflln;B} 

where a and C are positive constants depending on n, N, a, b0R. 

Remark. By means of a covering argument, we can remove the dependence of 
p, ca on boR in Theorem 4.3, Corollary 4.6. 

5. BOUNDARY ESTIMATES 

The extensions of the local estimates of the preceding sections to the bound- 
ary 9 h of the set Qh proceed analogously to the continuous case [7, ?9.9]. 
In particular, writing for any mesh function u and ball B c R n 

M= max u, m= min u, 
(5.1) Bh-Qh Bh-Qh 

uM = max{u, M}, um = min{u, m}, 



50 HUNG-JU KUO AND N. S. TRUDINGER 

we find that Theorems 3.1 and 4.3 continue to hold with u replaced by u+ and 
urn respectively, and f extended to vanish outside LhI From the extended 
weak Harnack inequality, we can deduce an oscillation estimate in neighbor- 
hoods of boundary points: To formulate this, we assume that Q satisfies a 
uniform exterior cone condition, that is, at every point z E 0Q there exists a 
finite right circular cone V, with vertex z, congruent to a fixed cone V and 
satisfying vz r Q = z. It follows then that there exists a positive number 0 
(independent of h) such that 

(5.2) 1+ [Bh -h] > 
[BhI 

for any ball B = BR(xo), with center xo E 0Qh. We then have the following 
estimate. 

Theorem 5.1. Let u be a solution of the difference equation (4.20) in Qh and 
B = BR(xo) be a ball in R' with center xo E Qh . Then for any 0 < z < I, we 
have the estimate 

(5.3) osc u < C{r [(1+coR) maxluj?+RjjIf/Ajf;Q hnB] +w( v'R)I 
flhBT Bhhh 

where a and C are positive constants depending on n, N, ao, bodiam Q, and 
6, and t(R) = oscBh-uh U . 

Note that (5.3) reduces to the interior estimate (4.22) when B C Q. 

6. DIFFERENTIAL OPERATORS 

Let L be a linear, second-order differential operator of the form 

(6.1) Lu = a'jDiju + b'Diu + cu, 

with real coefficient a'J (= aji), b', c, i, j = 1, ..., n, on the domain Q c 
Rin . The family of difference operators {Lhlo < h < ho}, given by (1.2), is 
called consistent with L if 

(6.2) lim Lhu(x) = Lu(x) 

for all u E C2 (Q) and x C Uo<h<h Qh. Suppose that L is uniformly elliptic 
in Q with bounded coefficients satisfying 

(6.3) ?141 < a ?jXjj <Aj42, lbl < u, c < 0 

for all 4 E R n and given positive constants Ai, A, ,u. Then we have the follow- 
ing result of Motzkin and Wasow [11]. 

Lemma 6.1. There exists a family of positive-type difference operators {Lh 10 < 
h < ho} of theform (1.2), consistent with L, satisfying (1.3), (2.1) for y' = hei 
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and a(x, y) = 0 for yI > Nh, where N, a0, bo ho depend only on n, A/A, 
and #1/) . 

The proof of Lemma 6.1 follows by decomposition of the coefficient matrix 
a = [a'J] into a sum of dyadic matrices, 

(6.4) a = E a(y)y C), Y=Y/lYl 
lylo=N 

with nonnegative coefficients a(y) = a(y). This enables us to write the differ- 
ential operator L in terms of pure second-order derivatives, 

(6.5) Lu = j a(y)D--u + b'Dju + cu, 
y 

yielding the consistent family, 

(6.6) Lhu(x) = , a(x, y) 5u(x) + b'(x)5i u(x) + c(x)u(x) (y = hei). 
y 

Let us therefore prove (6.4). In the special case when a is diagonally dominant, 
that is, 

(6.7) Zla'jl < aii -AO i = I n , 
/Ij 

for some constant AO > 0, we can write 

( .. . 

a= a - la'jll e. 0 e. 
i=1 \ bij ] 

(6.8) + - a1j + a'j)(ei + ej) 0 (ei + ej) 4 L 

+ Iala - a'j))(ei - ej) (ei -ej), 4 L 
ilj 

thus obtaining (6.4) with N = 1 and a(ei) > AO . For general a, we first observe 

that there exists an orthogonal set n..., y' with Y'K = N such that 

lyi 
_ 

fI,, < 1/2N, 

where 
(o 1, .. ., (on 

is an orthonormal set of eigenvectors of a corresponding to 
eigenvalues A, ..., An. Consequently, 

n 

a= A,k((P ?(k) 

(6.9) k=1 
nn 

=Z'ik(Y ?yk ) + Z Qk Qk _?k Xk) 
k=l k=l 
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will be diagonally dominant with respect to the coordinate system yl, ..., y 
if 

(6.10) 2A-n2A/N?>0 >0, 

and the representation (6.4) follows, with 

(6.11) a(y/) > Ai - nAIN > Ao, 

Note that we can always ensure condition (2.1) for y' = hei (with Ai ? A/2), 
by first replacing a by a- -I1/2. o 

Using Lemma 6.1, we can pass from Theorems 2.1, 3.1, 4.3, Corollaries 4.5, 
4.6, and Theorem 5.1 to their continuous analogues [7, Theorems 9.1, 9.20, 9.22, 
Corollaries 9.25, 9.24, 9.28, respectively]. To accomplish this, we approximate 
the differential inequalities 

(6.12) Lu? () f 

for a function u e C2 (Q) n C?(Q) by difference inequalities, 

(6.13) Lhu () f +(Lhu-Lu) 

(also approximating Q if necessary by a smooth subdomain), and use the fact 
that the convergence in (6.2) will be uniform in compact subsets of Q. 

The discrete approach thus yields new proofs of these fundamental estimates 
for differential equations, which are independent of any measure or integration 
theory. Because of the dependence on N, we do not recover the Aleksandrov 
maximum principle [7, Theorem 9.1] for nonuniformly elliptic operators, but 
this can be achieved by a refinement of the discrete approach. 
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